
See Our team
Wondering how we keep quality?
Got unsolved questions? Ask Questions
GATE
GMAT
CBSE
NCERT
Career
Interview
Railway
UPSC
NID
NIFT-UG
NIFT-PG
PHP
AJAX
JavaScript
Node Js
Shell Script
Research
Computer networks basic concepts unit 3
Basic Networking Concepts
1. Introduction
2. Protocols
3. Protocol Layers
4. Network Interconnection/Internet
1. Introduction
-A network can be defined as a group of computers and other devices
connected in some ways so as to be able to exchange data.
-Each of the devices on the network can be thought of as a node; each
node has a unique address.
-Addresses are numeric quantities that are easy for computers to work
with, but not for humans to remember.
Example: 204.160.241.98
-Some networks also provide names that humans can more easily
remember than numbers.
Example: www.javasoft.com, corresponding to the above numeric
address.
Addressing- Internet address
Consists of 4 bytes separated by periods
Example: 136.102.233.49
-The R first bytes (R= 1,2,3) correspond to the network address;
-The remaining H bytes (H = 3,2,1) are used for the host machine.
-InterNIC Register: organization in charge of the allocation of the
address ranges corresponding to networks.
-Criteria considered:
→ Geographical area (country)
→ Organization, enterprise
→ Department
→ Host
Domain Name System (DNS)
-Mnemonic textual addresses are provided to facilitate the manipulation
of internet addresses.
-DNS servers are responsible for translating mnemonic textual Internet
addresses into hard numeric Internet addresses.
Ports
-An IP address identifies a host machine on the Internet.
-An IP port will identify a specific application running on an Internet host
machine.
-A port is identified by a number, the port number.
-The number of ports is not functionally limited, in contrast to serial
communications where only 4 ports are allowed.
-There are some port numbers which are dedicated for specific
applications.
Finger 79
Telnet 23
POP3 (e-mail) 110
SMTP (e-mail) 25
Gopher 70
FTP 20 and 21
HTTP 80 etc.
Data Transmission
-In modern networks, data are transferred using packet switching.
-Messages are broken into units called packets, and sent from one
computer to the other.
-At the destination, data are extracted from one or more packets and
used to reconstruct the original message.
-Each packet has a maximum size, and consists of a header and a data
area.
-The header contains the addresses of the source and destination
computers and sequencing information necessary to reassemble
the message at the destination.
packet
header data
| 1001….101 | 00010000111…000000110001100 |
Types of Networks- There are two principle kinds of networks:
Wide Area Networks
(WANs)- and Local Area Networks (LANs).
WANs
-Cover cities, countries, and continents.
-Based on packet switching technology
-Examples of WAN technology: Asynchronous Transfer Mode (ATM),
Integrated Services Digital Network (ISDN)
LANs
-Cover buildings or a set of closely related buildings.
-Examples of LAN technology: Ethernet, Token Ring, and Fibber
Distributed Data Interconnect (FDDI).
Ethernet LANs: based on a bus topology and broadcast communication
Token ring LANs: based on ring topology
FDDI LANs: use optical fibbers and an improved token ring mechanism
based on two rings flowing in opposite directions.
Interconnection
-Networks of low capacity may be connected together via a backbone
network which is a network of high capacity such as a FDDI network, a
WAN network etc.
-LANs and WANs can be interconnected via T1 or T3 digital leased
lines
-According to the protocols involved, networks interconnection is
achieved using one or several of the following devices:
→Bridge: a computer or device that links two similar LANs based on
the same protocol.
→ Router: a communication computer that connects different types of
networks using different protocols.
→ B-router or Bridge/Router: a single device that combines both the
functions of bridge and router.
→ Gateway: a network device that connects two different systems, using
direct and systematic translation between protocols.
2. Protocols
-
Define the rules that govern the communications between two
computers connected to the network.
-Roles: addressing and routing of messages, error detection and
recovery, sequence and flow controls etc.
-A protocol specification consists of the syntax, which defines the kinds
and formats of the messages exchanged, and the semantic, which
specifies the action taken by each entity when specific events occur.
Example: HTTP protocol for communication between web browsers
and servers.
13
S: MAIL FROM: Paul@Alpha.ARPA
R: 250 OK
S: RCPT TO: Jack@Beta.ARPA
R: 250 OK
S: DATA
R: 354 Beginning of mail; ending by .
S: Blah blah blah
S: …etc.
S: .
R: 250 OK
Datagram protocol also built on top of IP.
-Has the same packet-size limit (64Kb) as IP, but allows for port
number specification.
-Provides also 65,536 different ports.
-Hence, every machine has two sets of 65,536 ports: one for TCP and the
other for UDP.
-Connectionless protocol, without any error detection facility.
-Provides only support for data transmission from one end to the other,
without any further verification.
-The main interest of UDP is that since it does not make further
verification, it is very fast.
-Useful for sending small size data in a repetitive way such as time
information.
4.5 Internet Application Protocols
On top of TCP/IP, several services have been developed in order to
homogenize applications of same nature:
-
FTP (File Transfer Protocol) allows the transfer of collection of files
between two machines connected to the Internet.
-
Telnet (Terminal Protocol) allows a user to connect to a remote host in
terminal mode.
-
NNTP (Network News Transfer Protocol) allows the constitution of
communication groups (newsgroups) organized around specific topics.
-
SMTP (Simple Mail Transfer Protocol) defines a basic service for
electronic mails.
-
SNMP (Simple Network Management Protocol) allows the
management of the network.