
See Our team
Wondering how we keep quality?
Got unsolved questions? Ask Questions
GATE
GMAT
CBSE
NCERT
Career
Interview
Railway
UPSC
NID
NIFT-UG
NIFT-PG
PHP
AJAX
JavaScript
Node Js
Shell Script
Research
Mesh Radio
How to study this subject
A Mesh is a very general form of network, not unlike the Internet. A
wireless mesh is a mesh network like any other, but the links between
nodes are implemented with a radio of some form. In a radio mesh
network, each wireless device is capable of acting as a router as well
as an end station; it not only transmits and receives data for itself
but passes on data for others as well. As long as you are in range of
another device you have coverage.
The more devices the better the coverage. Mesh networks may involve either fixed or mobile devices. The principle is similar to the way packets go around the Internet, data will hop from one device to another until it reaches its destination. Dynamic routing capabilities included in each device allow this to happen. To implement such dynamic routing capabilities, each device needs to communicate its routing information to every device it connects with, "almost in real time". Each device determines what to do with the data it receives. Either pass on to the next device or keep it. The algorithm used should ensure that the data takes the "most appropriate route".
Most importantly, the number of possible links between a given node and any other is potentially much greater than in a wired network, since the actual configuration of a particular wireless mesh need not be determined until it is actually moving data. Paths through the network can change from moment to moment in response to varying traffic loads, radio conditions, or traffic prioritization. Wireless meshes are thus among the most flexible network structures ever created, and these are amazingly adaptable and applicable to many different missions, applications, and markets.
The more devices the better the coverage. Mesh networks may involve either fixed or mobile devices. The principle is similar to the way packets go around the Internet, data will hop from one device to another until it reaches its destination. Dynamic routing capabilities included in each device allow this to happen. To implement such dynamic routing capabilities, each device needs to communicate its routing information to every device it connects with, "almost in real time". Each device determines what to do with the data it receives. Either pass on to the next device or keep it. The algorithm used should ensure that the data takes the "most appropriate route".
Most importantly, the number of possible links between a given node and any other is potentially much greater than in a wired network, since the actual configuration of a particular wireless mesh need not be determined until it is actually moving data. Paths through the network can change from moment to moment in response to varying traffic loads, radio conditions, or traffic prioritization. Wireless meshes are thus among the most flexible network structures ever created, and these are amazingly adaptable and applicable to many different missions, applications, and markets.
Official Notes
Add contents here
Notes from other sources
Model question papers
Add contents here
Previous year question papers
Add contents here
Useful links
Add contents here