We are building EduLadder(ELADR) - Protocol

The Eladr Protocol is a decentralized, security and efficiency enhanced Web3 noSQL database powered by IPFS as the data storage layer https://ipfs.io/, and the Cardano block chain as the rewards token platform, https://cardano.org/. It provides a JSON based, IPFS layer 2 solution for data indexing and retrieval in an 'append only' file system built with open source Node.js API libraries.

The ELADR token was designed to incentivize and reward community members as a proof of contribution. Token holders are also granted access to EduLadder.com premium features as well as associated ELADR token enabled apps.


Real Problems! Real Experts!

Join Our Telegram Channel !

The Eduladder is a community of students, teachers, and programmers. We help you to solve your academic and programming questions fast.
In eduladder you can Ask,Answer,Listen,Earn and Download Questions and Question papers.
Watch related videos of your favorite subject.
Connect with students from different parts of the world.
Apply or Post Jobs, Courses ,Internships and Volunteering opportunity. For FREE
See Our team
Wondering how we keep quality?
Got unsolved questions? Ask Questions

You are here:Open notes-->Seminar-topics-and-ppt-for-engineering-->Quantum-Computing

Quantum Computing

How to study this subject

Due to technical obstacles, till date, a quantum computer has not yet been realized. But the concepts and ideas of quantum computing has been demonstrated using various methods. Here, we discuss four of the most important technologies that are used to demonstrate quantum computing. They are

1. Nuclear Magnetic Resonance
2. Ion Trap
3. Quantum Dot
4. Optical Methods

While reading the following "top four technologies", two things should be kept in mind. The first is that the list will change over time. Some of the approaches valuable for exploring quantum computing in the laboratory are fundamentally un-scalable, and so will drop out of contention over the next few years. The second thing to keep in mind is that although there are a bewildering number of proposed methods for demonstrating quantum computing (a careful search will yield many more options that what is listed here); all of them are variations on three central themes:

(a) manipulating the spin of a nucleus or subatomic particle
(b) manipulating electrical charge
(c) manipulating the polarization of a photon.

In variation "a" a qubit is derived from superposition of up and down spins. In variation "b" a qubit is derived from superposition of two or more discrete locations of the charge. In the last variation a qubit is derived from superposition of polarization angles. Of the three, the manipulation of spin is generally viewed as the most promising for practical large-scale application. Let’s now see each of these techniques in detail.

Official Notes

Add contents here

Notes from other sources

Quantum Computing.DOC

Model question papers

Add contents here

Previous year question papers

Add contents here

Useful links

Add contents here



You might like this video:Watch more here

Watch more videos from this user Here

Learn how to upload a video over here