We are building EduLadder(ELADR) - Protocol

The Eladr Protocol is a decentralized, security and efficiency enhanced Web3 noSQL database powered by IPFS as the data storage layer https://ipfs.io/, and the Cardano block chain as the rewards token platform, https://cardano.org/. It provides a JSON based, IPFS layer 2 solution for data indexing and retrieval in an 'append only' file system built with open source Node.js API libraries.

The ELADR token was designed to incentivize and reward community members as a proof of contribution. Token holders are also granted access to EduLadder.com premium features as well as associated ELADR token enabled apps.

WHITE PAPER Buy Now Try BETA

Real Problems! Real Experts!

Join Our Telegram Channel !


The Eduladder is a community of students, teachers, and programmers. We help you to solve your academic and programming questions fast.
In eduladder you can Ask,Answer,Listen,Earn and Download Questions and Question papers.
Watch related videos of your favorite subject.
Connect with students from different parts of the world.
Apply or Post Jobs, Courses ,Internships and Volunteering opportunity. For FREE
See Our team
Wondering how we keep quality?
Got unsolved questions? Ask Questions


You are here:Open notes-->Encyclopedia-->Curvature

Curvature

How to study this subject


In mathematics, curvature is any of a number of loosely related concepts in different areas of geometry. Intuitively, curvature is the amount by which a geometric object deviates from being flat, or straight in the case of a line, but this is defined in different ways depending on the context. There is a key distinction between extrinsic curvature, which is defined for objects embedded in another space (usually a Euclidean space) in a way that relates to theradius of curvature of circles that touch the object, and intrinsic curvature, which is defined at each point in a Riemannian manifold. This article deals primarily with the first concept.

The canonical example of extrinsic curvature is that of a circle, which everywhere has curvature equal to the reciprocal of its radius. Smaller circles bend more sharply, and hence have higher curvature. The curvature of a smooth curve is defined as the curvature of its osculating circle at each point.

More commonly this is a scalar quantity, but one may also define a curvature vector that takes into account the direction of the bend as well as its sharpness. The curvature of more complex objects (such as surfaces or even curvedn-dimensional spaces) is described by more complex objects from linear algebra, such as the general Riemann curvature tensor.



Official Notes


Add contents here

Notes from other sources


Add contents here

Model question papers


Add contents here

Previous year question papers


Add contents here

Useful links


Add contents here

Editors

RajivRajivRajivRajiv


play