The Eladr Protocol is a decentralized, security and efficiency enhanced Web3 noSQL database powered by IPFS as the data storage layer https://ipfs.io/, and the Cardano block chain as the rewards token platform, https://cardano.org/. It provides a JSON based, IPFS layer 2 solution for data indexing and retrieval in an 'append only' file system built with open source Node.js API libraries.

The ELADR token was designed to incentivize and reward community members as a proof of contribution. Token holders are also granted access to EduLadder.com premium features as well as associated ELADR token enabled apps.

WHITE PAPER Buy Now Try BETAReal Problems! Real Experts!

Join Our Telegram Channel !

In eduladder you can Ask,Answer,Listen,Earn and Download Questions and Question papers.

Watch related videos of your favorite subject.

Connect with students from different parts of the world.

Apply or Post Jobs, Courses ,Internships and Volunteering opportunity. For FREE

See Our team

Wondering how we keep quality?

Got unsolved questions? Ask Questions

Checkout our YouTube channel for video tutorials and learn more about Eduladder.

Searching for :UPSCDate:2023-02-05 10:47:58Done by:Anonymous user(Visitor)

Searching for :JavaScriptDate:2023-02-05 10:31:09Done by:Anonymous user(Visitor)

View All

### Similar Questions

**C onsider a fully developed, two-dimensional and steady flow of a viscous fluid between two fixed parallel plates separated by a distance of 30 mm. The dynamic viscosity of the fluid is 0.01 kg/m-s and the pressure drop per unit length is 300 Pa/m. The fluid velocity at a distance of 10 mm from the bottom plate, in m/s, is ________.**

0 Answer

**Consider a fully developed, two-dimensional and steady flow of a viscous fluid between two fixed parallel plates separated by a distance of 30 mm. The dynamic viscosity of the fluid is 0.01 kg/m-s and the pressure drop per unit length is 300 Pa/m. The fluid velocity at a distance of 10 mm from the bottom plate, in m/s, is ________.**

0 Answer

**Consider fully developed, steady state incompressible laminar flow of a viscous fluid between two large parallel horizontal plates. The bottom plate is fixed and the top plate moves with a constant velocity of U = 4 m/s. Separation between the plates is 5 mm. There**

0 Answer

**The viscosity, μ (in Pa.s) of a power law fluid as a function of shear rate, γ̇ (in s-1 ) is given by the following relation: Gate-2018-General-Aptitude**

0 Answer

**Two immiscible, incompressible, viscous fluids having same densities but different viscosities are contained between two infinite horizontal parallel plates, 2 m apart as shown below. The bottom plate is fixed and the upper plate moves to the right with a constant velocity of 3 m/s. With the assumptions of Newtonian fluid, steady, and fully developed laminar flow with zero pressure gradient in all directions, the momentum equations simplify to**

0 Answer

**Consider a laminar flow in the x-direction between two infinite parallel plates (Couette flow). The lower plate is stationary and the upper plate is moving with a velocity of 1 cm/s in the x-direction. The distance between the plates is 5 mm and the dynamic viscosity of the fluid is 0.01 N-s/m2 .**

0 Answer

**For steady flow of a viscous incompressible fluid through a circular pipe of constant diameter, the average velocity in the fully developed region is constant. Which one of the following statements about the average velocity in the developing region is TRUE?**

1 Answer

**A nalysis of a flow phenomenon in a system requires the following variables: i. Pressure [M L1 T 2] ii. Velocity of the fluid [L T 1] iii. Size of the system [L] iv. Density of the fluid [M L3] v. Viscosity of the fluid [M L1 T 1] According to Buckingham Pi theorem (dimensional analysis) what is the number of independent DIMENSIONLESS variables needed to describe this system?**

1 Answer

**The wall of a constant diameter pipe of length 1 m is heated uniformly with flux q” by wrapping a heater coil around it. The flow at the inlet to the pipe is hydrodynamically fully developed. The fluid is incompressible and the flow is assumed to be laminar and steady all through the pipe. The bulk temperature of the fluid is equal to 0 oC at the inlet and 50 oC at the exit. The wall temperatures are measured at three locations, P, Q and R, as shown in the figure. The flow thermally develops after some distance from the inlet. The following measurements are made:**

0 Answer

**Consider fluid flow between two infinite horizontal plates which are parallel (the gap between them being 50 mm). The top plate is sliding parallel to the stationary bottom plate at a speed of 3 m/s. The flow between the plates is solely due to the m**

1 Answer

**A two-dimensional, incompressible fluid flow is described by the stream function Ψ = xy 3 m2 /s on the Cartesian x-y plane. If the density and dynamic viscosity of the fluid are 1 kg/m3 and 0.1 kg/m-s, respectively, the magnitude of the pressure gradient in the x direction at x=1 m and y=1 m is _______ N/m3 (round off to 1 decimal place).**

0 Answer

**Consider the flow between two infinitely long parallel plates of large width separated by a distance 2H. The upper plate is moving with a constant velocity U while the lower plate is stationary. The volumetric flow rate per unit width of the plate is**

0 Answer

**An incompressible Newtonian fluid flows in a pipe of diameter D1 at volumetric flow rate Q . Fluid with same properties flows in another pipe of diameter 2 1 D D / 2 at the same flow rate Q . The transition length required for achieving fully-developed flow is 1 l for the tube of diameter D1 , while it is 2 l for the tube of diameter D2 . Assuming steady laminar flow in both cases, the ratio 1 2 l l is:**

0 Answer

**The velocity field in Cartesian coordinates in a two-dimensional steady incompressible flow of a fluid with density ρ is V = xi − yj. Assuming no body and line forces, the magnitude of pressure gradient ∇p at point (1,1) is**

0 Answer

**Bernoulli’s equation is applicable for (GATE-CIVIL-Engg-2018)**

2 Answer

**The drag force, FD, on a sphere kept in a uniform flow field depends on the diameter of the sphere, D; flow velocity, V; fluid density, ρ; and dynamic viscosity, µ. Which of the following options represents the non-dimensional parameters which could be used to analyze this problem? - gate civil 2017**

1 Answer

**In a Lagrangian system, the position of a fluid particle in a flow is described as x = xoe −kt and y = yoe kt where t is the time while xo, yo, and k are constants. The flow is (Gate 2018 Mechanical engineering)**

1 Answer

**In a cross-flow filtration process, the pressure drop (ΔP) driving the fluid flow is 2 atm, inlet feed pressure (Pi ) is 3 atm and filtrate pressure (Pf) is equal to atmospheric pressure.**

0 Answer

**The power input P to a centrifugal pump is a function of the volume flow rate Q, impeller diameter D, rotational speed Ω, fluid density ρ, dynamic viscosity μ, and surface roughness ε. To carry out a dimensional analysis using Buckingham’s π theorem, which one of the following sets can be taken as the set of repeating variables?**

0 Answer

**I n a two-dimensional, incompressible and irrotational flow, fluid velocity (v) in the ydirection is given by v 2x5y . The velocity (u) in the x-direction is**

1 Answer

### Notes

**VTU SYLLABUS 2010 (Civil) FLUID MECHANICS [10CV35] Engineering**

**CE2202 MECHANICS OF FLUIDS**

**CE2253 APPLIED HYDRAULIC ENGINEERING**

**Fluid Mechanics - 06ME46-B VTU notes**

**CE 2050 FINITE ELEMENT TECHNIQUES**

**Fluid Mechanics - 10CV35 VTU notes**

**CE 2043 DESIGN OF PLATE AND SHELL STRUCTURES**

**CE 2023 ELECTRONIC SURVEYING**

**ME 2204 Fluid Mechanics and Machinery**

**AT 22 07 Fluid Mechanics and Machinery Laboratory**

## Consider a fully developed, two-dimensional and steady flow of a viscous fluid between two fixed parallel plates separated by a distance of 30 mm. The dynamic viscosity of the fluid is 0.01 kg/m-s and the pressure drop per unit length is 300 Pa/m. The fluid velocity at a distance of 10 mm from the bottom plate, in m/s, is ________.

## Consider a fully developed, two-dimensional and steady flow of a viscous fluid between two fixed parallel plates separated by a distance of 30 mm. The dynamic viscosity of the fluid is 0.01 kg/m-s and the pressure drop per unit length is 300 Pa/m. The fluid velocity at a distance of 10 mm from the bottom plate, in m/s, is ________. gate 2018

Asked On2022-02-03 16:18:45 by:Fenny

Taged users:

Likes:

Be first to like this question

Dislikes:

Be first to dislike this question

Talk about this Like Dislike

Download question setAnswersNot yet answerdThis question has not found any answer yet! If you know the answer for this question please help us to find an answer.Please read

How to post an answer on eduladder

Lets together make the web is a better placeWe made eduladder by keeping the ideology of building a supermarket of all the educational material available under one roof. We are doing it with the help of individual contributors like you, interns and employees. So the resources you are looking for can be easily available and accessible also with the freedom of remix reuse and reshare our content under the terms of creative commons license with attribution required close.

You can also contribute to our vision of "Helping student to pass any exams"with these.Answer a question:You can answer the questions not yet answered in eduladder.How to answer a questionCareer:Work or do your internship with us.Work with usCreate a video:You can teach anything and everything each video should be less than five minutes should cover the idea less than five min.How to upload a video on eduladder