We are building EduLadder(ELADR) - Protocol

The Eladr Protocol is a decentralized, security and efficiency enhanced Web3 noSQL database powered by IPFS as the data storage layer https://ipfs.io/, and the Cardano block chain as the rewards token platform, https://cardano.org/. It provides a JSON based, IPFS layer 2 solution for data indexing and retrieval in an 'append only' file system built with open source Node.js API libraries.

The ELADR token was designed to incentivize and reward community members as a proof of contribution. Token holders are also granted access to EduLadder.com premium features as well as associated ELADR token enabled apps.

WHITE PAPER Buy Now Try BETA

Real Problems! Real Experts!

Join Our Telegram Channel !


The Eduladder is a community of students, teachers, and programmers. We help you to solve your academic and programming questions fast.
In eduladder you can Ask,Answer,Listen,Earn and Download Questions and Question papers.
Watch related videos of your favorite subject.
Connect with students from different parts of the world.
Apply or Post Jobs, Courses ,Internships and Volunteering opportunity. For FREE
See Our team
Wondering how we keep quality?
Got unsolved questions? Ask Questions

PH2161-ENGINEERING-PHYSICS--II--->View question


Asked On2017-06-12 05:24:06 by:milan-ransingh

Taged users:
prajwalamv

Likes:
Be first to like this question

Dislikes:
Be first to dislike this question
Talk about this  Like  Dislike
View all questions
Answers
conductivity of the semiconductor is moderate not very high and not very low. The typicality of semiconductor is that the valance electrons in the semiconductor are not free like metal instead they become trapped in the bond between two adjacent atoms. Germanium and Silicon are two very popularly used semiconductors. The crystal structure of both semiconductors consists a regular repetition of the three-dimensional unit.
Let us take the example of germanium where there are 32 orbiting electrons across the nucleus in each atom. Each atom in the germanium contributes four valence electrons to make the covalent bond with four adjacent germanium atoms in the crystal. So the atoms are tetravalent. The inert ionic core of the germanium acts as a positive charge of + 4 electronic charges. The valance electrons in germanium crystal serve to bind one atom to the next. Hence, it can be said that the valance electrons are tightly bounded with the atoms in the crystal. Because of that, although a germanium atom has four valence electrons in it germanium crystal as a whole is not an excellent conductor of electricity. At absolute zero temperatures a semiconductor crystal behaves just like an insulator as there are no free carriers of electricity available. However at room temperature (300oK), some of the covalent bonds in the crystal are broken due to available energy and this phenomenon makes the availability of free electrons in the crystal and hence conduction of semiconductor may be some extent possible at room temperature. The energy required to break the covalent bond is about 0.72 eV in germanium, and that is 1.1 eV in silicon at room temperature.

Answerd on:2017-06-13 Answerd By:prajwalamv

Likes:
Be first to like this answer

Dislikes:
Be first to dislike this answer
Talk about this  Like  Dislike
Conductivity of the semiconductor is moderate not very high and not very low. The typicality of semiconductor is that the valance electrons in the semiconductor are not free like metal instead they become trapped in the bond between two adjacent atoms. Germanium and Silicon are two very popularly used semiconductors. The crystal structure of both semiconductors consists a regular repetition of the three-dimensional unit

Answerd on:2019-06-17 Answerd By:Ak

Likes:
Be first to like this answer

Dislikes:
Be first to dislike this answer
Talk about this  Like  Dislike

Type your answer here in no less than 50 words :



Lets together make the web is a better place

We made eduladder by keeping the ideology of building a supermarket of all the educational material available under one roof. We are doing it with the help of individual contributors like you, interns and employees. So the resources you are looking for can be easily available and accessible also with the freedom of remix reuse and reshare our content under the terms of creative commons license with attribution required close.

You can also contribute to our vision of "Helping student to pass any exams" with these.
Answer a question: You can answer the questions not yet answered in eduladder.How to answer a question
Career: Work or do your internship with us.Work with us
Create a video: You can teach anything and everything each video should be less than five minutes should cover the idea less than five min.How to upload a video on eduladder