We are building EduLadder(ELADR) - Protocol

The Eladr Protocol is a decentralized, security and efficiency enhanced Web3 noSQL database powered by IPFS as the data storage layer https://ipfs.io/, and the Cardano block chain as the rewards token platform, https://cardano.org/. It provides a JSON based, IPFS layer 2 solution for data indexing and retrieval in an 'append only' file system built with open source Node.js API libraries.

The ELADR token was designed to incentivize and reward community members as a proof of contribution. Token holders are also granted access to EduLadder.com premium features as well as associated ELADR token enabled apps.

WHITE PAPER Buy Now Try BETA

Real Problems! Real Experts!

Join Our Telegram Channel !


The Eduladder is a community of students, teachers, and programmers. We help you to solve your academic and programming questions fast.
In eduladder you can Ask,Answer,Listen,Earn and Download Questions and Question papers.
Watch related videos of your favorite subject.
Connect with students from different parts of the world.
Apply or Post Jobs, Courses ,Internships and Volunteering opportunity. For FREE
See Our team
Wondering how we keep quality?
Got unsolved questions? Ask Questions

PH2161-ENGINEERING-PHYSICS--II--->View question


Asked On2017-06-12 05:29:23 by:milan-ransingh

Taged users:
13priya

Likes:
Be first to like this question

Dislikes:
Be first to dislike this question
Talk about this  Like  Dislike
View all questions
Answers
Semiconductor lasers are lasers based on semiconductor gain media, where optical gain is usually achieved by stimulated emission at an interband transition under conditions of a high carrier density in the conduction band.
The physical origin of gain in a semiconductor (for the usual case of an interband transition). Without pumping, most of the electrons are in the valence band. A pump beam with a photon energy slightly above the bandgap energy can excite electrons into a higher state in the conduction band, from where they quickly decay to states near the bottom of the conduction band. At the same time, the holes generated in the valence band move to the top of the valence band. Electrons in the conduction band can then recombine with these holes, emitting photons with an energy near the bandgap energy. This process can also be stimulated by incoming photons with suitable energy. A quantitative description can be based on the Fermi–Dirac distributions for electrons in both bands.
Most semiconductor lasers are laser diodes, which are pumped with an electrical current in a region where an n-doped and a p-doped semiconductor material meet. However, there are also optically pumped semiconductor lasers, where carriers are generated by absorbed pump light, and quantum cascade lasers, where intraband transitions are utilized.

Answerd on:2017-06-13 Answerd By:prajwalamv

Likes:
Be first to like this answer

Dislikes:
Be first to dislike this answer
Talk about this  Like  Dislike

Type your answer here in no less than 50 words :



Lets together make the web is a better place

We made eduladder by keeping the ideology of building a supermarket of all the educational material available under one roof. We are doing it with the help of individual contributors like you, interns and employees. So the resources you are looking for can be easily available and accessible also with the freedom of remix reuse and reshare our content under the terms of creative commons license with attribution required close.

You can also contribute to our vision of "Helping student to pass any exams" with these.
Answer a question: You can answer the questions not yet answered in eduladder.How to answer a question
Career: Work or do your internship with us.Work with us
Create a video: You can teach anything and everything each video should be less than five minutes should cover the idea less than five min.How to upload a video on eduladder